T-f=Mω2r,而T=mg不变,当ω增大时,摩擦力f减小;
当角速度较大时,M有离开圆心的运动趋势,故水平面对M的静摩擦力方向指向圆心,对于M,由静摩擦力和拉力的合力充当向心力,根据牛顿第二定律得:
T+f=Mω2r,而T=mg不变,当ω增大时,摩擦力f增大;
故平台转速由零增大时,M受到的摩擦力先减小后增大.
(2)M受到的摩擦力最小为零,仅由绳子的拉力提供向心力,则得:
T=Mω02r
又 T=mg
联立得:ω0=
|
|
(3)当ω具有最大值时,M有离开圆心趋势,水平面对M摩擦力方向指向圆心,并且达到最大值.
再隔离M有:
T+fm=Mωm2r
而fm=0.3Mg,T=mg
联立得:ωm=
|
|
10 |
答:(1)平台转速由零增大时,M受到的摩擦力先减小后增大.(2)M受到的摩擦力最小时,平台的角速度ω0等于2rad/s.(3)保持M与平台相对静止,平台的最大角速度ωm等于
10 |