(1)延长CE交BA的延长线于点F
∵CE⊥BE
∴∠EBC+∠BCE=∠EBF+∠BFE=90°
∵BE平分∠FBC
∴∠EBC=∠EBF
∴∠BCE=∠BFE(等角的余角相等)
∴△BCF为等腰三角形
BD=2CE
∵∠ABD+∠BDA=90°
∠CDE+∠ACF=90°
∠BDA=∠CDE(对顶角相等)
∴∠ABD=∠ACF
又AB=AC,∠BAC=∠CAF
∴△BAD≌△CAF
∴BD=CF
∵△BCF是等腰三角形,BE⊥CE
∴CE=EF(三线合一)
∴CF=2CE
即BD=2CE
(2_AEC=22.5°,∠BAC=90°=∠CED,又因为∠BAD=∠CDE,所以∠AEC=∠ABD=22.5°