∵D是AB的中点,
∴AD=BD,
∵EF∥AB,DF∥BE,
∴四边形BEFD是平行四边形,
∴EF=BD=AD,
∵EF∥AB,
∴EF∥AD,
∵EF∥AD,EF=AD,
∴四边形AFED是平行四边形,
∴DF、AE是平行四边形AFED的对角线,
∴DF、AE互相平分;
(2)∵EF∥AB,DF∥BE,
∴四边形BDFE是平行四边形,
∴BD=EF,
∵D是AB的中点,
∴AD=BD,
∴EF=AD,
∵EF∥AB,
∴∠ADO=∠EFO,∠DAO=∠FEO,
在△ADO和△EFO中,
∵
|
∴△ADO≌△EFO,
∴OD=OF,OA=OE,
即AE与DF互相平分;
或连接AF、DE.