> 数学 >
设f(x)=sinx,(0≤x≤π/2);f(x)=1/2,(π/2≤x≤π) 求定积分∫f(t)dt 积分上限x ;积分下限0
人气:313 ℃ 时间:2019-11-04 19:55:39
解答
0 <= x <= π/2,
∫_{0}^{x}f(t)dt = ∫_{0}^{x}sin(t)dt = 1 - cos(x)
π/2 ≤ x ≤ π,
∫_{0}^{x}f(t)dt = ∫_{0}^{π/2}f(t)dt + ∫_{π/2}^{x}f(t)dt
= ∫_{0}^{π/2}sin(t)dt + ∫_{π/2}^{x}dt/2
= 1 + (x - π/2)/2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版