在RT三角形ABC中,AB=AC,角BAC=90°,角1=角2,CE垂直BD的延长线于E,求证BD=2CE
在RT三角形ABC中,AB=AC,角BAC=90°,角1=角2,CE垂直BD的延长线于E,求证BD=2CE.用全等三角形做法,
人气:421 ℃ 时间:2019-08-18 03:06:31
解答
首先做辅助线,延长CE交BA的延长线于F 因为角EBF=角EBC,BE=BE,角BEF=角BEC=90度 所以三角形BEF和BEC全等 所以BC=BF,CE=EF 所以CE=1/2 CF 又因为角ABD+ADB=90度,角ECD+CDE=90度,角ADB=CDE 所以角ABD=ECD 因为AB=AC,角D...
推荐
- 如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.
- 如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.
- 在等腰RT三角形ABC中,∠A=90°,AB=AC,BD平∠CBA,CE垂直BD交BD的延长线于点E.求证:BD=2CE
- 如图所示,在RT三角形ABC中,AB=AC,角BAC=90°,BD为角平分线,CE垂直BD,交BD的延长线于点E,求证:BD=2CE
- 如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.
- 求证cosα^2+cos(α+β)^2-2cosαcosβcos(α+β)=sinβ^2
- 下列句子的标点符号的使用,正确的一项是
- 夜莺的歌声 写的是什么时候的事情?
猜你喜欢