证明:如果整系数二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数.
人气:117 ℃ 时间:2019-10-19 13:28:19
解答
证明:假设a、b、c全为奇数△=b2-4ac>=0有:x=−b±b2−4ac2a,可见存在有理根,即设b24ac为有理数n,∴b2-4ac=n2,(b-n)(b+n)=4ac,∵若n为偶数,(b-n)(b+n)=奇数×奇数=奇数≠4ac,∴n只能为奇数,b-n为...
推荐
猜你喜欢
- why,can,one,together,a,hope,you,find,your,own,happiness是什么意思
- 张华家八月份用水十二吨比七月份节约了五分之一张华家七月份用水多少吨
- 生命的美有哪一些?
- 初中地理亚洲的东部和南部的降水与什么风的强弱有直接关系
- 用像、在造一个比喻句
- 负7分之2x=8等于多少
- 热电偶的冷端补偿电路和测温电路是否相同,也就是说,实际是用两个热电偶在测温?
- 现象与本质之关系是什么?