an前n项和为sn 已知a1=1 S(n+1)=4an+2 设bn=a(n+1)-2an 证明数列{bn}为等比数列 求数列{an}通项公式
人气:233 ℃ 时间:2019-08-18 08:36:33
解答
S(n+1)=4(An)+2
Sn=4A(n-1)+2
两式相减
A(n+1)=S(n+1)-Sn=4An-4A(n-1)
A(n+1)-4An+4A(n-1)=0
A(n+1)-2An=2An-4A(n-1)=2(An-2A(n-1))
S2=4A1+2=4+2=6
A2=S2-A1=6-1=5
A2-2A1=5-2=3
{A(n+1)-2An},即{bn}是以3为首项,2为公比的等比数列
A(n+1)-2An=3×2^(n-1)
两边同除2^(n+1)
A(n+1)/2^(n+1)-2An/2^(n+1)=3×2^(n-1)/2^(n+1)
A(n+1)/2^(n+1)-An/2^n=3/4
依此类推
An/2^n-A(n-1)/2^(n-1)=3/4
A(n-1)/2^(n-1)-A(n-2)/2^(n-2)=3/4
……
A2/2-A1/1=3/4
上式相加,相同项消去
An/2^n-A1/2^1=3(n-1)/4
An/2^n=3(n-1)/4+1/2=(3n-1)/4
An=(3n-1)×2^(n-2)
推荐
- 设数列{An}的前n项和为Sn,已知A1=1,Sn+1=4An+2 求:(1)设bn=An+1-2An,证明数列{bn}是等比数列(2)求数
- 设数列an的前n项和为Sn,已知a1=1,Sn+1=4an+2 (1)设bn=an+1-2an,证明数列{bn}是等比数列 (2)求数列{an}的通
- 数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,并求{an}通项.
- 数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,并求其通项.设cn=an/2^n,求证cn是等差数列;求数列的通项公式和前N项和公式
- 数列{an}中,Sn为前n项和,S(n+1)=4an+2,a1=1.设bn=a(n+1)-2an,证明{bn}是等比数列
- 1/5(X+12)=1/7(X-8) 答案是-62 2--x+2/5=X--1/2 2X-1/3 - 2-x/4=1 答案是1/2
- 菜鸟数学题(完)
- 正方形ABCD中,G是对角线AC上的一点,连接GB,GD,GE垂直于cd于点E,GF垂直于GB,交CD与点F,
猜你喜欢