> 数学 >
如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且
BC
=
CD
,弦AD的延长线交切线PC于点E,连接BC.

(1)判断OB和BP的数量关系,并说明理由;
(2)若⊙O的半径为2,求AE的长.
人气:400 ℃ 时间:2020-10-02 02:06:33
解答
(1)OB=BP.
理由:连接OC,
∵PC切⊙O于点C,
∴∠OCP=90°,
∵OA=OC,∠OAC=30°,
∴∠OAC=∠OCA=30°,
∴∠COP=60°,
∴∠P=30°,
在Rt△OCP中,OC=
1
2
OP=OB=BP;
(2)由(1)得OB=
1
2
OP,
∵⊙O的半径是2,
∴AP=3OB=3×2=6,
BC
=
CD

∴∠CAD=∠BAC=30°,
∴∠BAD=60°,
∵∠P=30°,
∴∠E=90°,
在Rt△AEP中,AE=
1
2
AP=
1
2
×6=3.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版