用反证法证明ax^2+bx+c=0(a不等于0)有两个不相等的实数根,则b^2-4ac>0
人气:497 ℃ 时间:2019-10-03 21:21:25
解答
假设b^2-4ac=0或者b^2-4ac<0.原方程可变为a(x+b/2a)^2-(b^2-4ac)/4a=0因为a不等于0,可变为(x+b/2a)^2=(b^2-4ac)/4a^2(1)若b^2-4ac=0,则(x+b/2a)^2=(b^2-4ac)/4a^2=0,则有x+b/2a=0,解得x=-b/2a,原方程只有一个实根,与原方程有两个实根的条件不相符合,所以b^2-4ac不等于0(2)若b^2-4ac<0,则(x+b/2a)^2=(b^2-4ac)/4a^20
推荐
猜你喜欢
- what are you doing this weekend?选什么?
- 若sinx≥根号3/2,求x范围
- Looks up at the man that she turned
- 设数列{an{bn}{cn},已知a1=4,b1=3,c1=5,a(n+1)=an,b(n+1)=(an+cn)/2,c(n+1)=(an+bn)/2.求数列{cn-bn}的通项公式(2)求证:对任意n属于N*,bn+cn为定值
- it's tall and strong,but still it has no flowers.
- 甲乙两人从AB两地相向而行,相遇时,甲所行路程为乙的2倍多1.5千米,乙所行路程为甲路程的5/2,两地相距?
- 己知直线ax+4y-2=0与直线2x-5y+b=0互相垂直于点(1,c),求a,b,c,的值
- What will he do if he spend all the money?改错