P是双曲线
−=1(a>0,b>0)的右支上一点,F
1,F
2分别为双曲线的左、右焦点,焦距为2c,则△PF
1F
2的内切圆的圆心横坐标为( )
A. -a
B. a
C. -c
D. c
人气:106 ℃ 时间:2019-08-21 05:47:52
解答
∵点P是双曲线右支上一点,
∴按双曲线的定义,|PF1|-|PF2|=2a,
若设三角形PF1F2的内切圆心在横轴上的投影为A(x,0),该点也是内切圆与横轴的切点.
设B、C分别为内切圆与PF1、PF2的切点.考虑到同一点向圆引得两条切线相等:
则有:PF1-PF2=(PB+BF1)-(PC+CF2)
=BF1-CF2=AF1-F2A
=(c+x)-(c-x)
=2x=2a
x=a
所以内切圆的圆心横坐标为a.
故选B.
推荐
- 已知双曲线x^2/a^2-y^2/b^2=1的左右焦点分别是F1,F2 点p在双曲线的右支上
- 双曲线x2 a2 -y2 b2 =1(a>0,b>0)的左、右焦点分别为F1、F2离心率为e.过F2的直线与双曲线的右支交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2的值是( ) A.1+22 B.3+22 C.4-
- 设F1、F2分别为双曲线x^2/a^2-y^2/b^2=1的左右焦点,若在双曲线右支上存在点P,满足PF2=F1F2,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为
- P是双曲线X^2/a^2-y^2/b^2=1左支上的一点,F1,F2分别为左右焦点,焦距2c.三角...
- 已知点P是双曲线x平方/a平方-y平方/b平方(a>0,b>0)右支上的一点,F1,F2分别为双曲线的左、右焦点,且焦距为2c,则△PF1F2的内切圆的圆心的横坐标是
- Did you have a good time at Jane's birthday party?(同意句)
- 求教几道高1中数学题目
- 我取得了胜利 英语翻译
猜你喜欢