求证:△ABC是等边三角形的充要条件是a2+b2+c2=ab+bc+ca,这里a,b,c是△ABC的三条边.
人气:435 ℃ 时间:2020-04-21 03:51:28
解答
证明:(1)充分性:如果a2+b2+c2=ab+bc+ca,
则a2+b2+c2-ab-bc-ca=0
所以(a-b)2+(b-c)2+(c-a)2=0
所以(a-b)=0,(b-c)=0,(c-a)=0.
即a=b=c.
所以△ABC是等边三角形.
(2)必要性:如果△ABC是等边三角形,则a=b=c.
所以(a-b)2+(b-c)2+(c-a)2=0
所以a2+b2+c2-ab-bc-ca=0
所以a2+b2+c2=ab+bc+ca
综上可知:△ABC是等边三角形的充要条件是a2+b2+c2=ab+bc+ca.
推荐
猜你喜欢
- 长方体棱长和为216厘米,它的长、宽、高之比为4比3比2,长方体的表面积是多少平凡厘米
- 用英语翻译:在一个岛上
- 一个初三动词时态填空.很简单的说
- 一直a>b>c>d,则(1/(a-b)+1/(b-c)+1/(c-d))*(a-d)的最小值
- (1)画圆O以及互相垂直的两条直径AB,CD;以点A为圆心,AO为半径画弧,交圆O于点E,F(点E在劣弧AC上);连接AE,AD,EF,EC,OE,OF;
- 三元一次函数在空间直角坐标系中怎么画?
- 尤其初2的数学和英语基础不是很扎实
- 一辆初速度为18km/h的汽车,以0.5m/s2加速度做匀加速直线运动,加速到10s时汽车的速度是多大?