已知在△ABC中,AB=BC=1,∠ABC=90°,把一快含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角板DEF绕D点按逆时针方向旋转.
(1)DE交AB于M,DF交BC于N.
证明DM=DN;
在这一旋转过程应,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积
人气:440 ℃ 时间:2019-08-19 17:47:54
解答
(1)证明:由题意易知,MD⊥DN,连结BD,则∠ADB=90°=∠ADM+BDM=∠BDM+BDN.所以∠ADM=∠BDN,又∠A=∠BDN=45°,AD=BD=跟2/2.所以△ADM≌△BDN,所以DM=DN.(2)不变,因为△ADM≌△BDN,所以所求面积S=S△ABC-S△ADM-S△NDC...
推荐
- 如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转. (1)
- 如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转. (1)
- 如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转. (1)
- 如图,已知△ABC中AB=AC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上
- 已知△ABC中,AB=BC=1,∠ABC=90°,把一块有30°角的直角三角板DEF的直角顶点D放在AC的中点上,将△DEF
- 地球上的生命起源的学说
- 用0,1,2.9共十位数字组成无重复数字的四位数 1.其中能被5整除多少 2.偶数多少
- 收入和支出,零上和零下,这些量都是具有什么意义的量
猜你喜欢