三角形四心的组合的性质证明
1.三角形的任何顶点到垂心的距离,等于外心到对边距离的两倍.
2.三角形的内心和任一顶点的连线平分外心、垂心和这一顶点连线所成的角.
3.三角形的外心、垂心、重心三个点在一条直线上(需证明),且重心与垂心的距离是外心与重心距离的2倍.
三个命题(其实是4个)都帮我证明下,有图最好,如果没有图端点一定要说清楚,
人气:435 ℃ 时间:2020-05-09 17:09:09
解答
1:画任意一个三角形ABC,垂心为D,外心为E,设B垂AC于F,C垂AB于H,做△ABC的外接圆,ABC为三顶点abc为三内角 S为△ABC的面积 由正弦定理AB/sinc=BC/sina=AC/sinb=2R 由图像得∠c=∠BEH ∴EH=Rcosc=AB/(2tanc) CD=CF/cos∠...
推荐
猜你喜欢
- 请问I am lily who live in Paris.和 I am lily who lives in Paris 哪个正确
- 一个长方体冰柜,从里面量90cm,宽50cm,深50cm.它的容积是多少立方分米
- 美学中的名词解释 .
- “1.5*X的值等于3.6:4.8的值”怎么算比例(数学)
- 英语翻译
- 复合重句 中,where 和which用法有点歧义,如下题
- 甲乙两人相向而行甲的速度是20千米/小时,乙的速度是18千米/小时,他们在离中点3千米是相遇,问全?
- 在四边形ABCD中,AB>CD.E.F分别是对角线BD.AC的中点,求证:EF>1/2(AB-CD)