一条直线过点P(3,2)且与x轴、y轴的正半轴分别交于A、B两点,则当S△OAB面积最小时,直线方程为______.
人气:227 ℃ 时间:2020-07-05 08:13:35
解答
设直线方程为 y-2=k(x-3),k<0,可得A (3-2k,0 )、B (0,2-3k),S△OAB=12 (3-2k )( 2-3k)=12[12+(-9k)+4−k]≥12,当且仅当 (-9k)=4−k 时,即 k=-23 时,等号成...
推荐
- 过点p(2,1)作直线L分别交X轴、Y轴的正半轴于A,B两点,求三角形AOB的面积最小直线L的方程
- 过点(2,1)作直线l,分别交x轴、y轴的正半轴于点A,B,若三角形ABC的面积S最小,求直线l的方程.
- 过点p(2,1)作直线l,分别交x轴y轴的正半轴于A,B两点.当三角形AOB的面积最小时求直线l的方程
- 过点(1,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△ABC的面积最小时,求直线l的方程.
- 过点(1,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△ABC的面积最小时,求直线l的方程.
- 用简便方法计算:56×74+85×44+11×56.
- 分解因时:(a+2)平方-2a(a+2) 计算:(a的三次方+4a的平方+4a)÷(a的平方+2a) 快啊
- 六年级下册语文每课一练第17课《汤姆.索亚历险记》第五题
猜你喜欢