函数f(x)是定义在[1.-1]上的奇函数,且f(1)=1,若m,n属于[1.-1],m+n不等于0,f(m)+f(n)/(m+n)的值大于0
1.证明f(x) 是 【-1,1】 上的 增函数
最重要的第二问 2.f(x)小于等于t2-2at+1 对所有x€【-1,1】,a€【-1,1】恒成立,求t的范围.
人气:425 ℃ 时间:2020-08-03 11:48:00
解答
1.设任意m>n则m-n>0
所以由已知[f(m)+f(-n)]/[m+(-n)]>0
f(m)+f(-n)>0
因f(x)是奇函数,则f(-n)=-f(n)
所以f(m)-f(n)>0
即f(m)>f(n)
故f(x)是增函数
2. 要使.f(x)小于等于t2-2at+1 对所有x€【-1,1】,a€【-1,1】恒成立
只需f(x)的最大值f(1)=1≤t²-2at+1
t²-2at≥0
t(t-2a)≥0
(1) a0时,t≤0或t≥2a
希望能帮到你,祝学习进步O(∩_∩)O
推荐
- 已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若m,n€[-1,1],m+n不等于零时,有f(m)+f(n)比m+n大于零.求解f(x+1/2)<f(1-x)……求详解,急
- 已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若m,n€[-1,1],m+n不等于零时,有[f(m)+f(n)]/(m+n)>0,解不等式f(x+1/2)
- 已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n不等于0时,有
- 已知函数f(x)定义在[-1,1],且满足① f(1)=1;②f(-x)=-f(x);③m,n∈[-1,1],m+n不等于0,有[f(m)+f(n)]/(m+n)>0. 请解不等式f(x+0.5)
- 已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若m,n€[-1,1],m+n不等于零时,有[f(m)+f(n)]/(m+n)>0,解不等式:f(4-x2)+f(x+2)>0
- 仔,析,每个字组二个词
- 有道解方程不会做,
- 高中英语挂科怎麽办 ,高一英语考20几分,文科总分460多,我想考重点
猜你喜欢