在四棱锥P -ABCD中,底面ABCD是菱形,角ABC=60度,PA垂直平面ABCD,点M,N分别为BC,PA的中点
且PA=PB=2
(1)BC垂直平面AMN(2)求二面角B-PC-D余弦值(3)在线段PD上是否存在一点E,使得NM平行平面ACE,若存在,求出PE长,若不存在,请说明理由
人气:326 ℃ 时间:2019-08-18 15:30:57
解答
(1)连AM,底面ABCD是菱形,角ABC=60度,M是BC的中点,
∴AM⊥BC,
PA垂直平面ABCD,
∴PA⊥BC,
∴BC垂直平面PAM(即平面AMN).
(2)PA=PB=2=AC,
∴PB=PC=PD=2√2,BD=2√3,
∴△PBC≌△PDC(SSS),
作BE⊥AC于F,连DF,则DF⊥AC,DF=BF,
∴∠BFD是二面角B-PC-D的平面角.
易知AM=√3,PM=√7,PM⊥BC,
∴PM*BC=BF*AC,
∴BE=PM*BC/AC=√(7/2),
∴cosBFD=(2BF^-BD^)/(2BF^)=1-12/7=-5/7,为所求.
(3)取PD中点E,连NE,N是PA的中点,
∴NE∥=(1/2)AD∥=MC,
∴四边形MCEN是平行四边形,
∴MN∥CE,
∴MN∥平面ACE.
PE=PD/2=√2.
推荐
- 已知四棱锥p-abcd中,底面abcd为菱形pa⊥平面abcd,∠abc=60度,e,f分别是bc,pc的中点
- 如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中
- 已知四棱锥P-ABCD,底面ABCD为菱形,PA垂直平面ABCD,角ABC=60度,E,F分别是BC,PC的中点,证明AF垂直PD
- 如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点
- 如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,AP=AB=2,E在PD上,且PE=2ED,F是PC的中点, (1)证明:平面PBD⊥平面PAC;(2)求证:BF∥平面ACE;(3)求三棱锥D-BCF
- 没有运送货物的空车一天行驶70千米,装满货物后一天只能行驶50千米.现在从甲地运货到乙地,然后再空车返回,5天可以往返3次.甲乙两地相距_千米.
- 小红看一本书,已经看了全书的2/9还多12页,余下的比已看的多91页.这本书共有多少页?
- Master,run or you'll be murdered by Bryant
猜你喜欢