设A为n阶的对称矩阵,且|A|=1,则A为正交矩阵的充分必要条件是它的每个元等于自己的代数余子式aij=Aij
人气:473 ℃ 时间:2020-06-16 05:29:59
解答
充分性:
由已知, A* = A^T
所以 AA^T=AA*=|A|E = E
所以A为正交矩阵
必要性:
因为A是正交矩阵
所以 AA^T=E
而 AA*=|A|E=E
所以 AA^T=AA*
由A可逆, 得 A^T=A*
所以 aij=Aij.
注: 似乎用不上A的对称性
推荐
猜你喜欢
- 学校美术作品展中,有50幅水彩画,60幅蜡笔画,蜡笔画比水彩画多百分之几?
- 已知集合M=(1,2,3,4,5,6,7,8,9,),集合P满足:P⊆M,且若a∈P,则10-a∈P,这样的集合P有几个
- 16的x次方 乘 4的4次方=2的14次方 求x
- 现在要赏金20 if we go by car,we must know the t( )r( )的括号应该填什么
- 一个长方体的长宽高分别是a.b.h,如果高增高3米,那么表面积比原来增加多少平方米?
- 英语翻译
- 敬畏生命文中描写白色纤维飘散情景的用意是什么?
- 真空可以传导热吗?