圆O内接三角形ABC为等边三角形,D为弧BC上一点,连接AD、BD、CD,确定BD、CD、AD的数量关系,并证明
圆O内接三角形ABC为等边三角形,D为弧BC上一点,连接AD、BD、CD,确定BD、CD、AD的数量关系,
人气:478 ℃ 时间:2019-08-21 18:07:11
解答
延长CD至E使DE=BD,连接BE.
因为△ABC是等边三角形所以∠BDE=60°,又DE=BD所以△BDE是等边三角形
再证明△ADB≌△CEB(条件好找,自己找一下)
可得AD=CE即AD=BD+CD
推荐
- 圆的内接六边形ADBECF,三角形ABC是正三角形,弧AD=弧BE=弧CF,证明:六边形各角相等.
- △ABC为O的内接等边三角形ABC,D为弧BC上任一点,AD与BC交于F,证明:(1)BD+DC=AD
- 已知三角形ABC内接于圆O,AD垂直于BC,D为垂足,AE平分∠OAD交圆O于点E.求证:弧CE=弧BE
- 三角形ABC内接于圆O,AC=BC,D为弧BC上一点,延长DA至点E,使CE=CD 求证(1) AE=BD(2)若AD+BD=根号2 CD
- 锐角三角形ABC内接于内接于圆O ,AD垂直BC于D,E是BC弧中点,连接AE;AO,求证角EAO=角EAD
- 负一分之三 0.618 -3.14 260 -2009 七分之六 -0.010010001.0 0.3三循环
- When did your brother join the team?_______.
- -( )some more people to do the work?-Yes,l think we do
猜你喜欢