> 数学 >
请问(n+1)(n^2+1)(n^3+1)(n^4+1)(n^5+1)等于多少?
人气:135 ℃ 时间:2020-05-26 20:35:26
解答
(n+1)(n^2+1)(n^3+1)(n^4+1)(n^5+1)
=(n-1)(n+1)(n^2+1)(n^3+1)(n^4+1)(n^5+1)/(n-1)
=(n^2-1)(n^2+1)(n^3+1)(n^4+1)(n^5+1)/(n-1)
=(n^4-1)(n^4+1)(n^3+1)(n^5+1)/(n-1)
=(n^8-1)*(n^8+n^5+n^3+1)/(n-1)
你这个数字给的貌似不是太好,如果是1,2,4,8那样的将会简单得多……
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版