> 数学 >
证明 当m>n>0,(1+m)^n<(1+n)^m
人气:159 ℃ 时间:2020-06-17 15:01:03
解答
0<(1+m)^n<(1+n)^m
同取对数:
ln(1+m)^n<ln(1+n)^m
nln(1+m)ln(1+m)/m即证y=ln(1+x)/x为减函数
求导后对于x>0有y'<0
得证
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版