设复数Z=COSч-SINч+(根号2)+i(cosч+sinч)
1) 当ч=π/4时,求复数Z的三角形式
2) 当ч为何值时|Z|取最大值?求此最大值
人气:319 ℃ 时间:2020-05-21 01:26:15
解答
1)
ч=π/4时,
Z = √2 + √2i = 2(√2/2 + √2/2i )
化成三角形式,得
Z = 2[cos(π/4)+sin(π/4)i]
2)
|Z|²
=(cosч-sinч+√2)^2+(cosч+sinч)^2
=(cosч-sinч)^2+(cosч+sinч)^2 + 2√2(cosч-sinч) + 2
=2[(cosч)^2+(sinч)^2] + 2√2(cosч-sinч) + 2
=2√2(cosч-sinч) + 4
=4sin(ч+3π/4)+4
所以 ,当 ч+3π/4 = π/2 + 2kπ 时,
即 ч = 2kπ - π/4 时,
|Z|取最大值 √(4+4) = 2√2 .
推荐
- 设复数z=cosθ-sinθ+√2+i〔cosθ+sinθ〕,θ
- 化简(1+sinα/根号1+cosα-根号1-cosα)+(1-sinα/根号1+cosα+根号1-cosα)
- 已知复数z的实部大于0,且满足z=根号2(cosθ+isinθ)(θ属于R)z^2的虚部为2求复数z
- 若复数z满足1-z/1+Z=i,则|1+z|等于根号2,z怎么等于i的?
- 设复数z满足|z-1|=|z+i|,且|z-根号3|+|z+根号3|=2,求复数z
- 题目是这样的:
- 已知M是∠AOB内的一点,满足点M到OA,OB的两边的距离MC,MD相等,做射线OM,在射线OM上取一点P,连接PC,PD,找
- continuous-shot是什么意思
猜你喜欢