如图1,两半径为r的等圆⊙O
1和⊙O
2相交于M,N两点,且⊙O
2过点O
1.过M点作
![](http://hiphotos.baidu.com/zhidao/pic/item/0bd162d9f2d3572c4932656d8913632763d0c3ab.jpg)
直线AB垂直于MN,分别交⊙O
1和⊙O
2于A,B两点,连接NA,NB.
(1)猜想点O
2与⊙O
1有什么位置关系,并给出证明;
(2)猜想△NAB的形状,并给出证明;
(3)如图2,若过M的点所在的直线AB不垂直于MN,且点A,B在点M的两侧,那么(2)中的结论是否成立,若成立请给出证明.
(1)O2在⊙O1上,证明:∵⊙O2过点O1,∴O1O2=r,又∵⊙O1的半径也是r,∴点O2在⊙O1上;(2)△NAB是等边三角形,证明:∵MN⊥AB,∴∠NMB=∠NMA=90度,∴BN是⊙O2的直径,AN是⊙O1的直径,即BN=AN=2r,O2在BN上,...