若x∈[-π/3,2π/3],求函数y=cos^2(x+π/6)+sin(x+2π/3)的最大值与最小值
人气:330 ℃ 时间:2019-08-17 22:10:11
解答
原式可化为y=sin²(π/3-x)+sin(π/3-x)
令t=sin(π/3-x)
则y=t²+t=(t+1/2)²-1/4
∵x∈[-π/3,2π/3]
∴π/3-x∈[-π/3,2π/3]
∴t∈[负二分之根号三,1]
所以y∈[-1/4,2]
即y最大值为2,最小值为-1/4
推荐
猜你喜欢
- 7,77,777,.这个数列的规律~
- under construction 和under the construction有什么区别?
- 《羚羊木雕》在“他她满不在乎的地说”一句中,“满不在乎”有什么表达作用
- ·在直角三角形中,角ACB=90度,CD垂直AB于D ,AB=13,CD=6 ,则(AC+BC)的平方等于
- the first day _ school
- 用一个小正方体搭成一个立方体图形的问题,
- 画蛇添足这则寓言写的是什么
- 华东师范大学出版社的稍微详细一点要多少加多少