y=
| 2x−1 |
| x+1 |
| 2(x+1)−3 |
| x+1 |
| 3 |
| x+1 |
∵y'=
| 3 |
| (x+1)2 |
∴该函数y=
| 2x−1 |
| x+1 |
∴当x=3时,函数y=
| 2x−1 |
| x+1 |
| 5 |
| 4 |
当x=5时,函数y=
| 2x−1 |
| x+1 |
| 3 |
| 2 |
方法2:分式函数性质法
因为-
| 3 |
| x+1 |
所以函数y=
| 2x−1 |
| x+1 |
∴当x=3时,函数y=
| 2x−1 |
| x+1 |
| 5 |
| 4 |
当x=5时,函数y=
| 2x−1 |
| x+1 |
| 3 |
| 2 |
| 2x−1 |
| x+1 |
| 2x−1 |
| x+1 |
| 2(x+1)−3 |
| x+1 |
| 3 |
| x+1 |
| 3 |
| (x+1)2 |
| 2x−1 |
| x+1 |
| 2x−1 |
| x+1 |
| 5 |
| 4 |
| 2x−1 |
| x+1 |
| 3 |
| 2 |
| 3 |
| x+1 |
| 2x−1 |
| x+1 |
| 2x−1 |
| x+1 |
| 5 |
| 4 |
| 2x−1 |
| x+1 |
| 3 |
| 2 |