> 数学 >
若m、n都是正实数,方程x2+mx+2n=0和方程x2+2nx+m=0都有实数根,则m+n的最小值是(  )
A. 4
B. 6
C. 8
D. 10
人气:440 ℃ 时间:2020-06-03 10:07:59
解答
∵方程都有实根,
m2−8n≥0
4n2−4m≥0

∴m2≥8n,n2≥m.
∵m、n都是正实数,
因此有m4≥64n2≥64m,
∴m(m3-64)≥0,因m>0,则m3≥64,m≥4,所以m最小值是4;
又n2≥m,n2≥4得n≥2,即n的最小值为2,
故m+n的最小值为6.
故选B.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版