设总体x的概率密度为f(X,θ),其中θ味未知参数,且E(X)=2θ,x1,x2……xn为来自总体x的一个样本
-x 为样本均值,cx¯为θ的无偏估计(cx-为c乘以x的平均值),则常数c等于多少
人气:259 ℃ 时间:2019-08-19 03:17:25
解答
根据无偏估计的定义,统计量的数学期望等于被估计的参数,具体到这里就是说
E(c*X的平均值)=θ
又由期望的性质
E(c*X的平均值)=cE(X的平均值)=θ
那么
E(X的平均值)=θ/c
又E(X的平均值)其实就是总体均值,也就是2θ
那θ/c=2θ,c就等于1/2其实是这样的,X的平均值等于1/n倍的X1+X2+……+Xn。那E(X的平均值)=1/nE(X1+……+Xn)=(1/n)*nE(X1)=E(X1)=E(X)=2θ
推荐
- 设总体X的概率密度(如图).(1)(x1,x2……xn)是该总体的样本,求参数A的矩估计量.(2)若已知样本值(0.6,0.7,0.5,0.7,0.5),求参数A的矩估计值.
- 设X概率密度 f(x)=(θ+1)x^θ,0
- 设X1,X2...,Xn是取自总体X~E(X)的一个样本,求样本X1,X2...Xn的联合概率密度;求总体参数λ的矩估计量
- 设总体X的概率密度为f(x)=ae^(-ax),x>0;0,x=
- 设总体X~(μ ,σ^2),μ ,σ^2是未知参数,(X1,X2,.Xn)是来自总体的一个样本,
- need引导的一般疑问句能用do not have to来回答吗
- 英语单词总是记不住拼写和意思?
- 一个数的四次方怎么打
猜你喜欢