设A是n阶实对称幂等矩阵,即A²=A.
(1)证明:存在正交矩阵Q,使得(Q-1)AQ=diag(1,1,……,1,0,……,0)
(2)若A的秩为r,计算det(A-2I).
人气:168 ℃ 时间:2020-02-04 04:49:19
解答
(1)A是n阶实对称幂等矩阵,故A的特征值只能是0和1
故存在正交矩阵Q,使得(Q-1)AQ=diag(1,1,……,1,0,……,0)
(2)设特征值1是r重,0是n-r重,
则矩阵A-2I有r重特征值1-2=-1,n-r重特征值0-2=-2
所以det(A-2I)=(-1)^n*2^(n-r)第一问只说明Q是可逆矩阵,对其为正交矩阵一点没有作出证明只要A是实对称矩阵,就一点存在正交矩阵Q,使得(Q-1)AQ=Q'AQ为对角矩阵。
推荐
猜你喜欢
- 铭牌上标有“6V 10Ω”的电铃,现只有一个电压为9V的电源.
- 翻译 :no countries in this world is the best thing for everyone .地道点,
- 设F1 F2分别是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,若在其右准线上存在点P,使PF1的中垂线过点F2,求
- 草色遥看近却无的阅读题答案
- 什么的昆虫,用AABC
- 读文言文有什么方法
- 函数f(x)=lnx-1的零点一定位于区间 A.(1,2) B(2,3) C(3,4) D(4,5)
- 我国陆地领土面积约为多少万平方千米?