设A是n阶实对称幂等矩阵,即A²=A.
(1)证明:存在正交矩阵Q,使得(Q-1)AQ=diag(1,1,……,1,0,……,0)
(2)若A的秩为r,计算det(A-2I).
人气:405 ℃ 时间:2020-02-04 04:49:19
解答
(1)A是n阶实对称幂等矩阵,故A的特征值只能是0和1
故存在正交矩阵Q,使得(Q-1)AQ=diag(1,1,……,1,0,……,0)
(2)设特征值1是r重,0是n-r重,
则矩阵A-2I有r重特征值1-2=-1,n-r重特征值0-2=-2
所以det(A-2I)=(-1)^n*2^(n-r)第一问只说明Q是可逆矩阵,对其为正交矩阵一点没有作出证明只要A是实对称矩阵,就一点存在正交矩阵Q,使得(Q-1)AQ=Q'AQ为对角矩阵。
推荐
猜你喜欢
- 学校美术作品展中,有50幅水彩画,60幅蜡笔画,蜡笔画比水彩画多百分之几?
- 已知集合M=(1,2,3,4,5,6,7,8,9,),集合P满足:P⊆M,且若a∈P,则10-a∈P,这样的集合P有几个
- 16的x次方 乘 4的4次方=2的14次方 求x
- 现在要赏金20 if we go by car,we must know the t( )r( )的括号应该填什么
- 一个长方体的长宽高分别是a.b.h,如果高增高3米,那么表面积比原来增加多少平方米?
- 英语翻译
- 敬畏生命文中描写白色纤维飘散情景的用意是什么?
- 真空可以传导热吗?