设A为n阶矩阵,A≠O且存在正整数k≧2,使A∧k=O.求证E-A可逆且(E-A)-¹=E+A+A²+…+A∧k-1
人气:301 ℃ 时间:2020-06-11 10:07:35
解答
(E-A)(E+A+A^2+...+A^k-1)=E+A+A^2+...+A^k-1-A-A^2-...-A^k-1-A^k=E
所以E-A可逆,且其逆为E+A+A^2+...+A^k-1
推荐
- 设A为n阶矩阵,I是n阶单位阵,且存在正整数k≥2,使A∧k=O,而A∧(k-1)≠O证明I-A可逆
- 设A为n阶矩阵,且A不是零矩阵,且存在正整数k≥2,使A^k=0,证明:E-A可逆,且(E-A)=E+A+A^2+……A^k-1
- 设A为n阶矩阵,A≠O且存在正整数k≥2,使A的k次方=O,求证:E-A可逆,且(E-A)的逆矩阵=E+A+A的2次方+…
- 设A为n阶矩阵 存在正整数k 使得A的k次方等于O 证明:A不可逆
- 设A是n阶矩阵,满足A的k次方等于0(k是正整数).求证:E-A可逆,并且(E-A)的-1次方等于E+A+A的2次方+…+
- 人教版71页最后一题:、
- 小明,小华,小军分别用8元各买一种水果,小明买4/3千克,小华买的重量是小明的5/4,是小军的25/24.三人各买什
- 英语单选:1289The two girls quarreled ,____ the library excitedly and went home,
猜你喜欢