设A为n阶矩阵,A≠O且存在正整数k≥2,使A的k次方=O,求证:E-A可逆,且(E-A)的逆矩阵=E+A+A的2次方+…
+A的k-1次方
人气:191 ℃ 时间:2020-06-19 05:46:56
解答
利用公式a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+...+b^(n-1)]即可,将a代为E,b代为A,则有E^n-A^n=(E-A)[E^(n-1)+E^(n-2)A+...+A^(n-1)],由于A^k=O,E^k=E,因此(E-A)[E+A+...+A^(n-1)]=E,根据可逆矩阵的定义,就有E-A可逆,且其逆等于E+A+...+A^(n-1)
推荐
- 设A是n阶矩阵,满足A的k次方等于0(k是正整数).求证:E-A可逆,并且(E-A)的-1次方等于E+A+A的2次方+…+
- 已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E-A可逆,并求出E-A的逆矩阵.
- 设矩阵A的K次方等于0矩阵,如何证明E-A可逆,并求E-A的逆
- 设A为n阶矩阵 存在正整数k 使得A的k次方等于O 证明:A不可逆
- 设n阶矩阵A满足A的m次方等于0,m是正整数,证明E-A可逆,且E-A的逆矩阵等于E+A+A^2+A^3+.+A^m-1
- 解释心生芥蒂
- ()/28=4分之()=0.75=()%()成()
- 季风带的移动体现了什么规律
猜你喜欢