已知:如图,AD‖BC,E是线段CD的中点,AE平分∠BAD.求证:BE平分∠ABC
谢谢答得多了,我已经会了.有生一来第一次有点搞不懂的题也,用了中位线,还被老师打了个小×.55555
人气:220 ℃ 时间:2019-08-21 09:31:07
解答
延长AE、BC,相交于点F.
已知,AD‖BC,∠DAE = ∠BAE ,DE = EC ,
可得:∠BFA = ∠DAE = ∠BAE ,AE = EF ,
所以,BA = BF ,BE是等腰△BAF底边上的中线,
可得:BE平分等腰△BAF的顶角∠ABF,
即有:BE平分∠ABC .
推荐
- 如图,AD⊥CD于点D,BC⊥CD于点C,点E是CD的中点,AE平分∠BAD.求证:BE平分∠ABC.
- 已知:如图,在四边形ABCD中,AD平行BC,E为CD中点,连接AE,BE,且AE垂直BE于E,求证:BE平分角ABC
- 如图,BC∥AD,E为CD的中点,且AB=AD+BC,求证:AE平分∠BAD,BE平分∠ABC.
- 如图,AD⊥CD于点D,BC⊥CD于点C,点E是CD的中点,AE平分∠BAD.求证:BE平分∠ABC.
- 如图,梯形ABCD,AD∥BC,AB=AD+BC,E是CD的中点.求证: (1)AE⊥BE; (2)AE、BE分别平分∠BAD及∠ABC.
- he can inspire people with great confidence 的翻译
- 等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是_立方米,圆锥的体积是_立方米.
- 有一个两位数,其中十位上的数字比个位上的数字小2,如果这个两位数大于20而小于40,求这个两位数.
猜你喜欢