>
数学
>
证明四阶群g必为循环群或klein群
人气:123 ℃ 时间:2020-02-03 17:03:38
解答
证明 由拉格郎日定理可知,四阶群的元素的阶一定能整除群的阶4,故四阶群的元素的阶只能是1(幺元是唯一的1阶元),2,4,如果有一个元是4阶元,则该元自乘能生成群的所有元素,此时它是循环群,这个4阶元素是该循环群的生成元,否则如果除幺元外,所有的元均是2阶元,则此时该群正是4阶klein群.
推荐
《离散数学》 试证明群的两个子群的交集也构成的子群.
离散数学关于循环群的问题
离散数学(循环群)
设G是一个群,证明:如果G/Z(G)是循环群,则G是交换群
【离散数学】12阶循环群有多少个不同的子群?
二年级读书体会怎么写
微分几何入门与广义相对论看不懂看什么好
用加减消元法解{x+y=110,40x+20y=2400
猜你喜欢
6名学生玩“掷骰子”的游戏.小红在一个正方体的各面分别写着1、2、3、4、5、6.每人选一个数,然后任意掷
寻找一篇英语关于爱情的文章
爱心就是冬日里的阳光.这句话用的是什么修辞手法.
化学问题②填空题
下列关于晨昏线的所发中,正确的是()
天才表演 用英语怎么说
"人固有一死,或重于泰山,或轻于鸿毛."或"呢?
若一个氨基酸分子有两个羧基,其中一个羧基连接在R基上,则另一个羧基( ) A.与氨基端相连 B.与连有氨基的碳原子相连 C.与氢相连 D.与羧基端相连
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版