> 数学 >
设m为实数,且tanα,tanβ是方程mx^2+(2m+3)x+(m-2)=0的两个实数根,求tan(α+β)的最小值
人气:232 ℃ 时间:2020-06-14 23:37:51
解答
由韦达定理知:tanx tany=-(2m 3)/m,tanx*tany=(m-2)/m(我手机打不出拉丁字母,用xy代替).tan(x y)=(tanx tany)/(1-tanx*tany)代入可化简得:tan(x y)=-m-(3/2),因为有两实数根,所以其判别式大于等于零,可解得m>=-9...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版