> 数学 >
求微分方程xy'+(1-x)y=e^(2x)(0
人气:180 ℃ 时间:2020-06-13 18:35:24
解答
xy'+(1-x)y=e^(2x)
xy'+y-xy=e^(2x)
(xy)'-xy=e^(2x)
特征方程r-1=0
因此齐次通解是xy=Ce^x
设非齐次特解是xy=ae^(2x)
(xy)'=2ae^(2x)
代入原方程得
2ae^(2x)-ae^(2x)=e^(2x)
a=1
因此非齐次特解是xy=e^(2x)
因此方程的通解是
xy=Ce^x+e^(2x)
y=[Ce^x+e^(2x)]/x
lim(x→0+) y(x)=1
lim(x→0+) [Ce^x+e^(2x)]/x (0/0)
=lim(x→0+) [Ce^x+2e^(2x)]
=1
C=-2
因此特解是
y=[-2e^x+e^(2x)]/x
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版