当f′(x)>0时,解得:-1<x<0,
当f′(x)<0时,解得:x>0,
∴f(x)在(-1,0)递增,在(0,+∞)递减;
(2)由(1)得:
f(x)在[-
| 1 |
| 2 |
又f(0)=0,f(1)=1-ln4,f(-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴f(1)-f(-
| 1 |
| 2 |
∴t∈[-
| 1 |
| 2 |
| 1 |
| 2 |
(3)存在m=0满足条件,
理由:y=f′(x)与y=ln(x+
| 1 |
| 6 |
| 1 |
| 2 |
| 2 |
| 3 |
y=f′(x)与y轴交点为(0,0),
y=ln(x+
| 1 |
| 6 |
则S=
| ∫ | ln
|
| 1 |
| 6 |
| ∫ | 0ln
|
=1+
| 2 |
| 3 |
∴存在m=0满足条件.
