> 数学 >
证明 limx^x(x趋近于0时)=1
人气:280 ℃ 时间:2020-05-28 07:21:06
解答
原式=lim(x->0)[e^(xlnx)]
=e^[lim(x->0)(xlnx)]
=e^[lim(x->0)(lnx/(1/x))]
=e^[lim(x->0)((1/x)/(-1/x²))] (∞/∞型极限,应用罗比达法则)
=e^[lim(x->0)(-x)]
=e^(0)
=1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版