> 数学 >
计算定积分 ∫(π/6→π/2)cos²xdx
人气:234 ℃ 时间:2020-06-08 21:26:42
解答
∫(π/6→π/2)cos²xdx
=∫(π/6→π/2)(1+cos2x)/2dx
=∫(π/6→π/2)1/2dx+1/2 ∫(π/6→π/2)cos2xdx
=1/2(π/2-π/6)+1/4∫(π/6→π/2)dsin2x
=π/6+1/4sin2x(π/6→π/2)
=π/6+1/4(0-√3/2)
=π/6-√3/8
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版