(2010`广州一模)已知动圆C过点A(-2,0),且与圆M:(x-2)^2+y^2=64相内切.
(1)求动圆C的圆心的轨迹方程.
(2)设直线l:y=kx+m(其中k、m∈Z)与(1)所求的轨迹交于不同两点B、D,与双曲线(X^2) /4 - (Y^2)/12 =1交于不同两点E F 问 是否存在直线l使得向量DF(向量)+BE(向量)=0(向量)若存在 请指出这样的直线有多少条 若不存在 请说明理由
人气:363 ℃ 时间:2020-02-06 04:34:40
解答
(1)A在圆M内部 (2)第二问你就联立方程组,运用韦达定理,但要注
所以圆C圆M的圆收距等于两圆的半径的差 意方程的判别式
设圆C圆心(x,y)则
√[(x-2)^2+y^2]=8-√[(x+2)^2+y^2]
移项得
√[(x-2)^2+y^2]+√[(x+2)^2+y^2]=8
根据椭圆定义得,所求方程为
x^2/16+y^2/12=1
推荐
- 已知动圆C过点A(-2,0),且与圆M:(x-2)^2+y^2=64相内切,求动圆C的圆心的轨迹方程
- 已知定圆Q:X^2+y^2-2x-15=0,动圆M和已知圆内切,且过点(-1,0)
- 已知一个动圆与圆C:(x+4)2+y2=100相内切,且过点A(4,0),则动圆圆心的轨迹方程_.
- 已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.求C的方程.
- 已知定圆x^2+y^2-6x-55=0,动圆M和已知圆内切且过点P(-3,0),求圆心M的轨迹方程
- 如图,小米用一个圆环形物体画了两个圆.这两个圆的周长分别是多少?内圆的周长是外圆周长的几分之几?
- 加不同的偏旁组字,再组成词语. 见( )—— 鸟( )____ 舟( )——
- 已知4U-u=6U+2u=14求U,u的值
猜你喜欢