数列{an}的各项为正,对任意正整数n,an与2的等差中项等于其前n项和Sn与2的等比中项,求{an}的通项公式
人气:228 ℃ 时间:2019-12-09 01:36:11
解答
an/2+1=√(2Sn)
Sn=an^2/8+an/2+1/2
S(n+1)=a(n+1)^2/8+a(n+1)/2+1/2
a(n+1)=S(n+1)-Sn=a(n+1)^2/8+a(n+1)/2-an^2/8-an/2
a(n+1)^2/8-a(n+1)/2-an^2/8-an/2=0
a(n+1)^2-4a(n+1)-an^2-4an=0
a(n+1)=an+4
an=-2+4n
推荐
- 已知an为全为正的数列,an与2的等差中项等于sn与2的等比中项,求an的通项公式
- {an}首项为 1,前n项和为Sn,任意正整数n 有n an Sn成等差数列 1证数列{Sn+n+2}成等比数列2求{an}通项公式
- {an}是正数组成的数列,其前n项和为Sn,并且对所有正整数n,an与2的等差中项等于Sn与2的等比中项
- 等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则数列{an}的公比为( ) A.12 B.13 C.25 D.49
- 设数列{an}是正数组成的数列,其前n项和Sn,且对任意n属于N*,an与2的等差中项等于Sn与2的等比中项,求
- 帮忙把下面这段短文翻译为英文
- “古典音乐之都”用英语怎么写?
- 一道数学题,超急!111
猜你喜欢