∵f(x)=
| 1 | 
| x | 
∴
| 1 | 
| x+1 | 
| 1 | 
| x | 
∵方程x2+x+1=0无实数解,
∴f(x)=
| 1 | 
| x | 
(2)∵函数f(x)=lg
| t | 
| x2+1 | 
∴lg
| t | 
| (x+1)2+1 | 
| t | 
| x2+1 | 
| t | 
| 2 | 
∴(t-2)x2+2tx+2(t-1)=0有实数解,
t=2时,x=−
| 1 | 
| 2 | 
t≠2时,由△=4t2-4(t-2)×2(t-1)≥0,
得t2−6t+4≤0⇒t∈[3−
| 5 | 
| 5 | 
∴t∈[3−
| 5 | 
| 5 | 
| 1 | 
| x | 
| t | 
| x2+1 | 
| 1 | 
| x | 
| 1 | 
| x+1 | 
| 1 | 
| x | 
| 1 | 
| x | 
| t | 
| x2+1 | 
| t | 
| (x+1)2+1 | 
| t | 
| x2+1 | 
| t | 
| 2 | 
| 1 | 
| 2 | 
| 5 | 
| 5 | 
| 5 | 
| 5 |