如图,正方形ABCD内接于圆,P为弧AD上任一点,求证PB=PD+根号2PA
人气:361 ℃ 时间:2019-08-18 16:18:38
解答
设正方形ABCD边长为a,在△PAB中,∠APB=45°,由余弦定理得:a²=PA²+PB²-2PAPBcos45°,a²=PA²+PB²-√2PAPB;在△PAD中,∠APD=135°,由余弦定理得:a²=PA²+PD²-2PAPDcos135°,a²=PA²+PD²+√2PAPD;则PA²+PB²-√2PAPB=PA²+PD²+√2PAPD,PB²-PD²=√2PAPB+√2PAPD,(PB-PD)(PB+PD)=√2PA(PB+PD),PB-PD=√2PA,PB=PD+√2PA.
推荐
- 已知ABCD是矩形,PD垂直平面ABCD,PD=DC=a,AD=根号2 a,M,N分别是AD,PB中点,求点A到平面MNC的距离.向量
- 已知四边形ABCD是矩形,PD垂直平面ABCD,PD=DC=a,AD=根号2a,M,N分别是AD、PB的中点,求证:平
- 在四棱锥P-ABCD中,底面ABCD是矩形,M,N分别是PA,PB的中点,PD垂直平面ABCD,且PD=AD=根号2,CD=1
- P是正方形ABCD外一点,P在平行边AB、CD之间,PA=根号17,PB=根号2,PC=根号5,求PD的长
- 已知ABCD是矩形,PD⊥面ABCD,PD=DC=a,AD=根号二a,M、N分别是AD、PB的中点,
- 篇末“人比黄花瘦”一句运用了_______和_______的修辞手法.
- 2X平方-3X-1=0
- using this machine,a search party tried to find gold.using是动名词吗?
猜你喜欢
- 已知序列函数fn(x)在[a,b]上一致收敛于极限函数f,且fn(x) 在[a,b]上有界.g(x)是在R上的连续函数,求证 g(fn(x))一致收敛于g(f(x))
- 钱塘湖春行中,描绘西湖美景的诗句是
- 古代汉语中被动句的概念
- 6千米的四分之三=几千米的六分之一
- ______!The baby is sleeping
- 籍长八尺余,力能扛鼎,才气过人,虽吴中子弟,皆已惮籍矣.
- 如图所示,已知线段AB=80厘米,M为AB的中点,P在MB上,N为PB的中点,且NB=14厘米,求PA的长.
- 六一班人数在40到50之间,男生人数比女生人数多5分之2.男.女生各多少人