> 数学 >
如图,正方形ABCD内接于圆,P为弧AD上任一点,求证PB=PD+根号2PA
人气:483 ℃ 时间:2019-08-18 16:18:38
解答
设正方形ABCD边长为a,在△PAB中,∠APB=45°,由余弦定理得:a²=PA²+PB²-2PAPBcos45°,a²=PA²+PB²-√2PAPB;在△PAD中,∠APD=135°,由余弦定理得:a²=PA²+PD²-2PAPDcos135°,a²=PA²+PD²+√2PAPD;则PA²+PB²-√2PAPB=PA²+PD²+√2PAPD,PB²-PD²=√2PAPB+√2PAPD,(PB-PD)(PB+PD)=√2PA(PB+PD),PB-PD=√2PA,PB=PD+√2PA.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版