证明:sin(α+3π/4)*cos(α+π/4)=sin[π/2+(α+π/4)]*cos(α+π/4)=cos(α+π/4)*cos(α+π/4)=cos��(α+π/4)=[√2/2*(cosα-sinα)]��=1/2(cosα-sinα)��;
2-2sin(α+3π/4)*cos(α+π/4)=2-(cosα-sinα)��=2-(cos��α+sin��α-2cosαsinα)=1+2cosαsinα=cos��α+sin��α+2cosαsinα=(cosα+sinα)��;
cos^4α-sin^4α=(cos��α)��-(sin��α)��=(cos��α-sin��α)(cos��α+sin��α)=(cosα-sinα)(cosα+sinα);
[2-2sin(α+3π/4)*cos(α+π/4)]/(cos^4α-sin^4α)=(cosα+sinα)��/(cosα-sinα)(cosα+sinα)=(cosα+sinα)/(cosα-sinα)=(1+tanα)/(1-tanα)