> 数学 >
求解一道高数证明题!
证明方程x=asinx+b,其中a大于0,b大于0,至少有一个正根,并且不超过a+b.(令f(x)=asinx+b-x,再用介值定理或零点定理)
人气:264 ℃ 时间:2020-06-08 14:59:24
解答
1)令f(x)=asinx+b-x,
则方程的根即f(x)=0的根;
2)注意到根>0且不超过a+b,
启发我们选定区间[0,a+b];
3)对f(x)在闭区间[0,a+b]上用零点定理,
验证满足定理条件:
条件1,f(x)在闭区间[0,a+b]上连续是成立的,
条件2,因f(0)=b>0,f(a+b)=a(sinx-1)小于等于0,所以f(0)*f(a+b)小于等于0,而零点定理需要f(0)*f(a+b)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版