求解一道高数证明题!
证明方程x=asinx+b,其中a大于0,b大于0,至少有一个正根,并且不超过a+b.(令f(x)=asinx+b-x,再用介值定理或零点定理)
人气:264 ℃ 时间:2020-06-08 14:59:24
解答
1)令f(x)=asinx+b-x,
则方程的根即f(x)=0的根;
2)注意到根>0且不超过a+b,
启发我们选定区间[0,a+b];
3)对f(x)在闭区间[0,a+b]上用零点定理,
验证满足定理条件:
条件1,f(x)在闭区间[0,a+b]上连续是成立的,
条件2,因f(0)=b>0,f(a+b)=a(sinx-1)小于等于0,所以f(0)*f(a+b)小于等于0,而零点定理需要f(0)*f(a+b)
推荐
- 设f(x)在【0,1】上连续,(0,1)内可导,且f(0)=f(1)=1,证明:在(0,1)内至少存在一点ξ,使f(ξ)+f'(ξ)=1
- 关于高等数学2道证明题求解
- 求证一高等数学证明题
- 高等数学证明题~
- 关于高等数学的一道证明题目
- 晨昏线和赤道的焦点有什么意义?
- 老牛比小马多驮了2个包裹,如果从小马背上拿来1个包裹,老牛背上的包裹数是小马的2倍,
- 小华距离学校1200米,他从家走到学校用了15分钟,平均每分钟走这段路的几分之几?他8分钟走了多少米?
猜你喜欢