sin(2A-B)=3/5,A∈[π/2,π],sinB=-12/13,B∈[-π/2,0],求sinA的值
人气:271 ℃ 时间:2020-04-16 01:24:29
解答
A∈[π/2,π],B∈[-π/2,0] 2A-B∈[π,5π/2] sin(2A-B)=3/5>0 2A-B∈[2π,5π/2] cos(2A-B)>0 cos(2A-B) =√[1-sin^2(2A-B)] =4/5 sinB=-12/13,B∈[-π/2,0] cosB =√[1-sin2(B)] =5/13 sin2A =sin[(2A-B)+B] =-33/65 sin(2A-B) =sin2AcosB-sinBcos2A =3/5 即cos2A=56/65 A∈[π/2,π] sinA>0 1-2sin2(A)=cos2A=56/65 sinA=(3√130)/130
推荐
- 已知sin(2α-β)=3/5,sinβ=-12/13,且α∈(π2,π),β∈(-π2,0).求sinα的值.
- sin(2a-b)=3/5,sinB=-12/13,且π/2
- 求证:sin(2α+β)sinα-2cos(α+β)=sinβsinα.
- 证明:sin(2a+b)/sinb-2cos(a+b)=sinb/sina
- 设sina=-3/5,sinb=12/13,且a∈(∏,3∏/2),b∈(∏/2,∏),求sin(a-b),cos2a,tanb/2的值
- 1:当n为偶数:s偶-s奇=二分之一nd
- 5个数的平均数是9,若把其中的一个数改为1,那么这5个数的平均数是8.问这个被改的数字是多少﹖
- 这个散句怎么变整句
猜你喜欢