如图13,在四边形ABCD中,AE平分∠BAD,DE平分∠ADC.(1)若∠B+∠C=120°,求∠AED的度数;(2)根据(1)的结论,请猜想∠B+∠C与∠AED之间的关系,并加以证明.
人气:140 ℃ 时间:2019-10-17 02:16:11
解答
第一问:
∵四边形的内角和=360°,又∠B+∠C=120°,∴∠BAD+∠CDA=240°.
∵2∠EAD=∠BAD,2∠EDA=∠CDA,∴2(∠EAD+∠EDA)=240°,
∴∠EAD+∠EDA=120°,而∠AED+∠EAD+∠EDA=180°,∴∠AED=180°-120°=60°.
第二问:
由∠B+∠C=120°,∠AED=60°,可猜想:∠B+∠C=2∠AED.
证明如下:
∵∠AED+∠EAD+∠EDA=180°,∴2∠AED+2∠EAD+2∠EDA=360°,
又2∠EAD=∠BAD,2∠EDA=∠CDA,∴∠BAD+∠CDA+2∠AED=360°··········①
而∠B+∠C+∠BAD+∠CDA=360°··········②
②-①,得:∠B+∠C-2∠AED=0,∴∠B+∠C=2∠AED.
推荐
- 如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC. (1)如果∠B+∠C=120°,则∠AED的度数=_;(直接写出计算结果,不必写出推理过程) (2)根据(1)的结论,猜想∠B+∠C与∠AED之间的关系,
- 如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC. (1)如果∠B+∠C=120°,则∠AED的度数=_;(直接写出计算结果,不必写出推理过程) (2)根据(1)的结论,猜想∠B+∠C与∠AED之间的关系,
- 如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC. (1)如果∠B+∠C=120°,则∠AED的度数=_;(直接写出计算结果,不必写出推理过程) (2)根据(1)的结论,猜想∠B+∠C与∠AED之间的关系,
- 如图,四边形ABCD中,AE平分角BAD,DE平分角ADC,且角ABC=80度,角BCD=70度,求角AED.
- 如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E,并且AE=1/2(AB+AD),求∠ABC+∠ADC的度数.
- 描写夏天夜晚景色的语段
- 用数学归纳法证明当n属于N*时,4*6^n+5^(n+1)-9能被23整除
- 已知三角形内接于圆O,过点A作直线EF,(1)如图1所示,AB为直径,要使EF是圆O的切线,还需要添加的条件是
猜你喜欢