已知3阶矩阵A的特征值为1,2,3,求|A*+A^2+3E|
如题.
人气:328 ℃ 时间:2019-09-22 07:56:55
解答
AA*=|A|E
A*=|A|A^(-1)=6A^(-1)
所以
A*+A^2+3E=6A^(-1)+A^2+3E
的特征值分别为:6+1+3=10;6÷2+4+3=10;6÷3+9+3=14
即
|A*+A^2+3E|=10×10×14=1400
推荐
- 已知n阶矩阵A满足A^2-2A-3E=0,证明A的特征值只能是-1或3,怎么证明只能?
- 已知3阶矩阵A的特征值是1、2、3,则|A*A-2A+3E|=?
- 已知3阶矩阵A的特征值为2,1,-1 求A+3E的特征值和计算行列式|A+3E
- 已知3阶矩阵A的特征值为1,1,2,则 |A*+2A+E|=?.
- 已知3阶矩阵A的特征值为1,2,3,试求B=1/2A*+3E的特征值
- 在一个左右长度不等的杠杆(2端为A,B点O是支点)上,AO小于BO,在A,B2端挂重物G1,G2后杠杆平衡,若此时将G1,G2同时向支点O移动相同距离,则
- 进来看看(用英语回答)
- "There will have less paper money"错在那里啊?急~~~~
猜你喜欢