| 2 |
| 2x+1 |
则f(0)=a-1=0,
解得:a=1,
当a=1时,f(x)=1-
| 2 |
| 2x+1 |
| 2x−1 |
| 2x+1 |
故存在a=1使函数f(x)为奇函数.
(2)设x1<x2,则2x1+1>0,2x2+1>0,2x1<2x2
∴f(x1)-f(x2)=a-
| 2 |
| 2x1+1 |
| 2 |
| 2x2+1 |
=
| 2 |
| 2x2+1 |
| 2 |
| 2x1+1 |
| 2(2x1−2x2) |
| (2x1+1)(2x2+1) |
即f(x1)<f(x2),
故函数f(x)为增函数
| 2 |
| 2x+1 |
| 2 |
| 2x+1 |
| 2 |
| 2x+1 |
| 2x−1 |
| 2x+1 |
| 2 |
| 2x1+1 |
| 2 |
| 2x2+1 |
| 2 |
| 2x2+1 |
| 2 |
| 2x1+1 |
| 2(2x1−2x2) |
| (2x1+1)(2x2+1) |