根据平衡条件得知,大圆环对小环的压力N和弹簧的弹力F的合力与力大小相等,方向相反,G′=G,
根据△G′NP∽△APO得:
F |
G |
AP |
AO |
又AP=2Rcosθ,AO=R,弹簧的弹力为:F=k(2Rcosθ-L)
代入得:
K(2Rcosθ−L) |
G |
2Rcosθ |
R |
解得:θ=arccos
KL |
2(KR−G) |
答:当小滑环P静止时,弹簧与竖直方向的夹角为arccos
KL |
2(KR−G) |
F |
G |
AP |
AO |
K(2Rcosθ−L) |
G |
2Rcosθ |
R |
KL |
2(KR−G) |
KL |
2(KR−G) |