计算∫∫∑(1/r^2)dS,其中∑是x^2+y^2=R^2被z=0及z=H所截部分,r是原点到柱面上的点
r是原点到柱面上的点的距离
答案是2pai 乘以arctan(H/R)
人气:213 ℃ 时间:2020-02-06 10:48:38
解答
r^2=R^2+z^2,∑在yoz平面的投影为矩形:z从0到H,y从-R到R
由于dS=√(1+y^2/(R^2-y^2))dydz=R/√(R^2-y^2))dydz
由对称性(∑在yoz平面的投影要计算2个)
∫∫∑(1/r^2)dS
=2R∫(0,H)(1/(R^2+z^2)dS∫(-R,R)1/√(R^2-y^2))dy
=2arctan(z/R)|(0,H)arcsin(y/R)|(-R,R)
=2πarctan(H/R)
推荐
- 计算∫∫﹙x+y+z﹚dS,其中∑为平面x+z=2被柱面X^2+Y^2=4所截得的有限部分上侧
- 计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分
- 计算计算∫∫﹙x^2+y^2﹚dS曲面∑是z^2=3(x^2+y^2)被平面z=0和z=3所截得的部分
- ∫∫(xy+yz+zx)dS,其中∑为锥面z=√(x^2+y^2)被柱面x^2+y^2=2ax所截得的有限部分
- 设∑是柱面x^2+y^2=9及平面z=0,z=3所围成的区域的整个边界曲面,计算∫∫(x^2+y^2)dS
- 某银行在某时间段内办理了以下业务:取出950元,存入500元,取出800元,存入1200元,取出1025元,存入2500元,取出200元.请你计算一下:银行在这段时间内总计是存入或取出多少元.(用有理数的减法做)
- it is( )and helps me learn a lot( )things.
- "浅草才能没马蹄“ 才能咋解释?
猜你喜欢