已知抛物线y=ax^2+bx+c经过点A(-1,0),B(3,0)C(0,3)三点,直线L是抛物线的对称轴.
(2)设点P是直线L上的一个动点,当三角形PAC的周长最小时,求点P的坐标
(3)在直线L上是否存在点M,使三角形MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标
人气:159 ℃ 时间:2019-10-25 05:54:27
解答
(2)由A、B、C三点可得,抛物线的解析式为:y=-2x^2+5x+3;由于P在对称轴L上,所以设P为(1,y)当三角形PAC周长C最短时,即AP+PC+AC的和最短,即C=|AC|+|PA|+|PC|=(3)有两个点.①AC为边,此时另一点为L与x轴的交点;②AC...
推荐
- 已知抛物线y=ax2+bx+c的对称轴为2,且经过点(3,0),则a+b+c的值( ) A.等于0 B.等于1 C.等于-1 D.不能确定
- 抛物线y=ax^2+bx+c经过(-1,-22),(0,-8),(2,8)三点,求它的开口方向,对称轴和顶点坐标
- 抛物线y=ax平方+bx+c经过{-1,-22}、{0,-8}、{2,8}三点求它的开口方向,对称轴和顶点坐标 我知道答案看下面
- 如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B. (1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点
- 抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3), (1)求二次函数y=ax2+bx+c的解析式; (2)在抛物线对称轴上是否存在一点P,使点P到B、C两点
- Tina和Judy认识已经很久了久了英语翻译
- 怎样可以快速记住英文单词?
- 错别字成语广告
猜你喜欢
- 住在酒店里的那种客人用英语怎么说?(不是customer吧?
- 26-4=[ ],先算[ ]-[ ]=[ ],再算[ ]-[ ]=[ ]
- 0,6,6,20,( ),42 括号里填什么啊?
- 从1,2,3,4,5,6这6个数字中,任取2个数字相加,其和为偶数的概率是 _ .
- 特称否定命题作为大前提构成三段论,若要得出必然性结论,她只能是何种结构形式
- 英语翻译
- 科里奥利力可分解地转偏向力和什么力
- 集合A={y|y=x^2+1,x∈R},B={x|y=x^2,x∈R}和C={(x,y)|y=x^2=1,x∈R}的含义分别是什么