已知向量op1=(cosA,sinA).op2=(1+sinA,1_cosA),o为原点,A属于R,则向量p1p2的长度的最大值是
人气:324 ℃ 时间:2020-04-15 16:31:39
解答
∵向量OP1=(cosA,sinA)、向量OP2=(1+sinA,1-cosA),
∴向量P1P2=向量OP2-向量OP1=(1+sinA-cosA,1-cosA-sinA),
∴|向量P1P2|
=√[(1+sinA-cosA)^2+(1-cosA-sinA)^2]
=√[(1-cosA)^2+(sinA)^2]
=√[1-2cosA+(cosA)^2+(sinA)^2]
=√(2-2cosA).
∴当cosA=-1时,|向量P1P2|有最大值为√(2+2)=2.
即:向量P1P2的长度的最大值为 2.
推荐
- 设0小于等于A小于2π,已知:两个向量OP1=(COSA,SINA),OP2=(2+SINA,2-COSA),则向量P1P2的长度的最大值是
- A属于[0,2π],已知向量OP1=(COSA,SINA)向量OP2=(3-COSA,4-sinA)则|→p1p2|的范围是多少?
- 已知向量OA=(λcosa,λsina)(λ≠0)向量OB=(-sinβ,cosβ),其中O为坐标原点
- 已知向量a=(cosa,sina),向量b=(根号3,-1),则|2a-b|的最大值?
- 已知A(3.0),B(0.3),C(cosa.sina) 1.若向量AC×向量BC=-1,求sin(a++pai/4)的值 2.o为坐标原点,若向量O
- need引导的一般疑问句能用do not have to来回答吗
- 英语单词总是记不住拼写和意思?
- 一个数的四次方怎么打
猜你喜欢